

Project Status and Update

Project Management

Scott Lambros (GSFC)

• Project Status Summary

Jean Grady (GSFC)

Top-Level Requnts & Ops Concept

Jay Bookbinder (SAO)

• Mission Performance Prediction Updates

Bill Podgorski (SAO)

 Reference Mission Architecture and Design Update **Govind Gadwal (GSFC)**

Constellation-X Project Management Organization

- Scott Lambros/Constellation-X Project Manager
 - · 301-286-0118
 - scott.lambros@gsfc.nasa.gov
- Jean Grady/Deputy Project Manager
 - Will continue to concentrate on technology development
- Augmenting Project Staff
 - Instrument Manager
 - Instrument Systems Engineer

Technology Readiness & Implementation Plan Review

- NASA HQ review of Constellation-X and LISA
 - Charter by first week of October 2002
- Report due beginning of February 2003
- Site Visit March 2003
- Constellation-X preparations
 - Level 1 Requirements and Flowdown
 - Technology development plans to TRL 6
 - Implementation Plan
 - Significant prototyping events which can be completed by February or March '03
 - Cost
 - · Technology development
 - Mission lifecycle: cost models with some grass-roots comparisons
 - Schedule

Industry Mission Studies

- Industry Pre-phase A mission and spacecraft studies planned to be issued through the Rapid Spacecraft Development Office (RSDO) in FY03
- Up to four study contracts will be awarded with nominal duration of 4 months
- Objectives of studies
 - Develop mission and spacecraft concepts
 - Develop independent cost estimates
 - Assess RSDO as vehicle for Constellation-X
 - Position mission for strong entry into Phase A
 - Build partnerships with potential industry partners

Nominal Schedule:

Draft Request for Offer (RFO)End 2002

- Release RFO 1st Quarter 2003

Award StudyMay 2003

Final Report/PresentationSeptember 2003

Potential RSDO vendors attending FST meeting

Constellation-X Top-Level Schedule

Project Highlights Since Nov 2002 FST

- Held Technology Meeting on May 1, 2002 in Greenbelt, MD
- Supported SEU Roadmap Subcommittee in May 2002
- Held "Executive" Technology Planning Meeting on August 15, 2002
- Developing and Updating Project documents which will be applicable to Independent Review and Industry Mission Studies (RSDO)
 - Reference Mission Architecture and Design Document
 - Draft Reference Operations Concept Document
 - Design Reference Mission Science Observation Set
 - Level 1 and 2 Requirements
 - Reference Instrument Interface Document
 - Technology Roadmap Document

Technology Development Highlights

SXT Optics

- Optics "Pathfinder" Assembly #1 has been designed and built;
 alignment tests are underway
- Second pathfinder to follow with emphasis on demonstrating X-ray performance

X-ray Calorimeter

 4-pixel array demonstrations expected in early FY 2003 for both TES and NTD/Ge

Grating

Parallel development of in-plane and off-plane approaches

CCD

- Changing baseline for technology development to Event-Driven CCDs
- Generation 1 devices fabricated

Hard X-ray Telescope

- Continuing to develop shell and segmented small optics prototypes

X-ray Calorimeters

Cryocoolers and ADR

Grating/CCD

Hard X-ray Telescope

Critical Technology Milestone Technology Readiness Level (TRL)

Top Level Requirements Status

- The 28 requirements in the top level are unchanged since 8/01 release of the document
- A Level 1 Requirements Document is in preparation to support the TRIP review process: final draft in November 02. This draft will incorporate significant inputs from the last FST meeting.
- 5 key science requirements are under review. FST inputs/advice are encouraged:
 - Mission Bandpass
 - Mission Minimum Resolution
 - Resolution at 6 keV
 - Angular Resolution below 10 keV
 - SXT Effective Areas

Mission Bandpass

Requirement: 0.25 to 40 keV (current goals are <0.2 and >60 keV)

- Suggestions:
 - Add goal for low energy of 0.1 keV? (potentially feasible with move to EDCCD: reasonable $A_{\rm eff}$ to 0.1keV)
 - Increase high energy requirement to 60 keV? (appears feasible from technology perspective). What about Ti lines?
 - Set a new goal above that?
- Issues:
 - What should the effective area requirements be at these energies?
- Impacts:
 - CCD array length & associated
- Plan:
 - Implement FST and mission team recommendations.
 - See presentations by: W. Cash, F. Harrison, R. Smith

Minimum Resolving Power

Mission Minimum Resolving Power:

- 0.25-10 keV = 300 (goal 600)
- 6-8.5 keV = 3000 (goal TBD)
- 10-40 keV = 10 (goal TBD)
 - Suggestions:
 - Set goal for a minimum of ~1,000 based on Chandra and XMM results and potential capabilities of the off-plane gratings?
 - Issues:
 - Location of crossover to gratings; What should the actual minimum resolution be? And what is achievable?
 - Impacts:
 - Many i.e., grating alignment tolerances, calibration requirements, etc.
 - Plan:
 - Grating approach study underway with downselect at end of FY03. Need additional science studies on resolution requirements for collisionless and non-maxwellian plasmas.
 - See presentations by:
 - A. Rasmussen, W. Cash, R. Smith, N. Brickhouse, F. Walter, H. Marshall

C-X-FST-15 September 18/19, 2002

Resolving Power at 6 keV

Mission Resolving Power:

- 0.25-10 keV = 300 (goal 600)
- 6-8.5 keV = 3000 (goal TBD)
- 10-40 keV = 10 (goal TBD)
 - Suggestions:
 - Change to goal of 2 eV, and requirement of 4 eV at 6 keV? (note, this keeps the 2eV requirement near 1 keV).
 - Issues:
 - What are the science impacts?
 - Plan:
 - Implement FST and mission team recommendations.
 - See presentations by:
 - Duane Liedahl (?)

Angular Resolution

Angular resolution:

- 15 arcsec (current goal 5 arcsec) below 10 keV
 - Issues: Chandra deep fields verify this is well matched to source confusion – but 5 arc sec goal would be helpful for crowded fields (especially galaxies). This is not a new issue...
 - Impacts: Calorimeter pixel and array sizes, thermal loading
 - Plan: Monitor technology development status
 - See presentation by Petre

Minimum effective areas:

- @ 0.25 keV = 1,000 cm 2
- @ 1.25 keV = 15,000 cm2
- @ 6.4 keV = 6,000 cm2
 - Status, Issues, Impacts and Plan:
 - See presentation by Bill Podgorski

Science-Based Trades Required

- Calorimeter: 2 eV vs. 4 eV resolution @ 6 keV
- CCD/Grating: Extending low energy range below 0.25 keV
- Mission Minimum Resolution: Studies for collisional and collisionless plasmas, absorption spectra, and nonmaxwellian plasmas
- HXT: Extend high energy range to >60 keV

Operations Concept

Operations Concept Key Requirements:

- An overall viewing efficiency of 90% (i.e., must account for slew times, target acquisitions, nominal calibrations, engineering time, radiation events, etc.)
- Timing accuracy 100 microsec (goal of 50)
- Celestial location accuracy of 5 arcsec
- 2-week data latency
- Calibration requirements

Operations Concept Methodology

Significant progress has been made in identifying and documenting the first-cut Constellation-X operations concept

Methodology

- Identify key mission, science, and spacecraft drivers from an operability standpoint (how?, who?, when?)
- Define key operational tasks and their interrelationships via thread and timeline analysis
- Map tasks to performing operations elements (people, ground data system, on-board computer, etc.)
- Document and iterate, refining the concept as Con-X matures early enough to influence space segment and ground system design, including pre-launch activities

Operations Concept Status

Status

- Inputs have been received from GSFC and SAO personnel and integrated into an initial draft
- The primary operations threads through the various ops elements have been identified, including the science elements
- TBDs are used liberally at his stage, with key assumptions and potential trades identified up front
- Completeness checks are in place within the document
- First draft released in time to support TRIP review (early December).
- Will use the DRM to identify and refine requirements, identify potential problem areas.

Backup Slides

Primary Operational Thread

SXT Effective Area

SXT Design

- Segmented optics made baseline
- Modular GSFC design
- Grating/CCD Instrument
 - In-plane/off-plane options being considered
 - Revisions to in-plane grating efficiencies
 - Event Driven CCD made baseline
- Micro-calorimeter Instrument
 - No changes

SXT Design Impacts On Effective Area

Outer Modules (12 P and 12 H)

Inner Modules (6 P and 6 H)

- Modular Housing Design
- Segment length range:
 - 200mm (230 shells)
 - 300mm (167 shells)
- Blockage of radial and azimuthal structure accounted for in detail, with individual shell blockage factors
- Gold coating, 16.965 gms/cm2
- Inner/Outer split at R ~= 445mm
 - Gratings mount over outer modules
- Azimuthal structure eliminates ~4 mirrors
 - For example, in 230 shell design, shells 89, 90, 91 and 92 are removed

Grating/CCD Impacts on Effective Area

- Two grating options now under consideration:
 - In-plane
 - Off-plane
 - Detailed work on area and spectral resolution for both options now underway in support selection process
 - Work this summer indicated that in-plane grating efficiencies used in the area prediction were un-realistically high. These have now been revised to more realistic values and are included in current area prediction.
- Event Driven CCD (EDCCD) is now baseline
 - EDCCD uses a surface deposited 200A° Aluminum optical blocking filter (OBF) which increases effective area of grating/CCD instrument
 - This OBF is included in area prediction

SXT Effective Area Prediction

Mission Effective Area Requirements and Area Predictions for Candidate SXT Configuration

- -Segmented Optic
- -200mm Segment Length
- -230 Shells
- -Au Coating
- -4 S/C
- -GSFC Modular Design
- -Structural Blockage varies with E
- with E
- -Radial and Circumferential rib blockage included
- -Gratings over outer 90 shells
- -In-plane Grating (Typ)
- -Revised Grating Efficiencies (lower)
- -EDCCD 200 A° Filter
- -Baseline Calorimeter

Area where R > 300,

(thru typical Instruments)

Image Resolution Error Budget

15 Arcsec (HPD) Image Requirement – No changes

SXT/Calorimeter Image Error Budget - Requirements							
ITEM (HPD - arcsec)	RQMT	Margin	Budget Allocation				
On-orbit Image Resolution	15.00	6.80	13.37				
Detector pixelization error (5 arcsec pixels)				4.08			
On-Orbit Telescope				12.73			
Telescope level effects					5.29		
Image Reconstruction errors (over obs)						4.24	
Attitude knowledge drift							3.00
SXT/SI focal plane drift							3.00
SXT/Telescope mounting strain						2.00	
SXT/SI vibration effects						2.00	
SXT/SI misalignment (off-axis error)						1.00	
SXT/SI Focus Error						1.00	
SXT Optics - On-orbit performance					11.58		
SXT Mirror launch shifts						2.00	
SXT thermally induced errors (ΔT driven)						3.61	
Housing/glass CTE mismatch							3.00
Epoxy/glass bi-layer effects							2.00
Long term material stability effects						1.00	
SXT Mirror, As-built						10.77	
Assembly (bonding) strain							3.00
Alignment Errors (Using CDA)							3.00
Optical Elements							9.90

Backup Slides

SXT Structural Blockage

Transmittance vs. Shell

Grating/CCD Impacts on Effective Area

September 10 C-X-FST-33

In-Plane Grating Efficiency Plot

C-X grating efficiency model

Notes on In-Plane Grating Efficiencies

- In-plane grating efficiency curves used in area calculations over past several years were un-realistically high.
 - Both grating teams (Columbia/Colorado) agreed on this point
- There is a program office need for an updated set of values for the in-plane design (need to know where we stand on area vs. requirement)
- Off-plane efficiencies will be determined by experiment over next year
- Three sources of grating efficiency information were examined:
 - Experimental data from MIT gratings from A. Rasmussen (3 wavelengths/orders 0, 1 and 2)
 - Published data on XMM grating efficiencies (RGS-COL-CAL-99005)
 - Analytical calculations by Dave Content of GSFC (tried to fit experimental points)
- Data are inconsistent:
 - MIT grating data for -1 order is above XMM data (0.25 vs. 0.18)
 - XMM data higher than experimental for order -2
 - Second order peak efficiency may well have been missed due to limited number of wavelengths measured on MIT gratings
- Decided that best approach would be to use Dave Content's calculation for first order since it was tuned to match measured data
- Use XMM data for second order since it has the right shape (it may be too high)

Reference Mission Architecture and Design

- Continuing development of reference configuration for demonstration of feasibility, establishment of technology requirements and development of cost estimates
- Four satellites in mission; launched two at a time on Atlas V or Delta IV
 - Atlas V has successfully completed its maiden launch in August
 - Delta IV maiden launch is scheduled in October
- Each satellite configuration comprises
 - One Spectroscopy X-ray Telescope (SXT) with 1.6 meter diameter segmented optics
 - Three Hard X-ray Telescopes (HXTs) with 0.4 meter diameter optics
 - One fixed optical bench to provide 10 meter focal length to optics
 - One Calorimeter Detector Assembly and one CCD Detector Assembly for SXT; and one CdZnTe Detector Assembly for each HXT
 - Separable spacecraft bus and instrument module

Reference Mission Architecture and Design Updates

- Incorporated Fixed Optical Bench
 - Increases reliability
 - Reduces mass
- Included Segmented SXT Optics
- Updated configurations to include impacts due to new top-level requirements
 - Imposed new timing requirements
 - Needed 100 microseconds timing accuracy for science
 - Imposed new bright source requirements
 - Increased mission requirements to 40000 counts per second maximum
 - Imposed new pixel requirements to 1000 counts per second maximum
- Update advances in instruments, structures, and subsystems

Reference Mission Architecture and Design Updates (cont.)

- Investigating two potential launch vehicle separation systems
- Completed preliminary study by GSFC/SAO to verify pointing requirements are achievable
 - Mechanical analysis
 - Thermal analysis
 - Attitude control analysis

Fixed Bench Configuration

Spacecraft Module

Cryocooler Technology Status

- Advanced Cryocooler Technology Development Project is constituted to develop cooler for Constellation-X, JWST, TPF
- Four Teams are under study contract
 - Ball Aerospace; Boulder, Colorado
 - Creare Inc.; Hanover, New Hampshire
 - Lockheed Martin; Palo Alto, California
 - TRW; Redondo Beach, California
- Kickoff meetings were held in April 2002 and midterm reviews were held in June 2002
- Preliminary Design Reviews were held in early September, with final reports due on September 30
- Demonstration contracts will be awarded in October so that engineering model cooler will be delivered in end CY 2004